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ABSTRACT : A neural net model (developed by Seidenberg & McClelland, 1989)
computes phonological representations for alphabetic letter strings. Learning, over
a series of training experiences with English words, corresponds to changes in
weights on connections between units at different layers in the model. After train-
ing, the performance of the model simulates many features of the word-naming
performance of adult English readers. “Lesioning” the trained model also yields
at least some features of one prominent form of acquired alexia. The distributed
representations used by this and other neural net models have important implica-
tions for modelling cognitive impairments that result from brain lesions.
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Traditional theorizing in the field of
cognitive psychology and neuropsychology
relies on descriptive process models consist-
ing of boxes and arrows. The diagram in
Figure 1, for example, postulates that a
written word (in the English alphabetic
writing system) can be pronounced by using
one of three different routines. One routine
proceeds via orthographic word recognition
and semantics, a second via orthographic
recognition followed by word level trans-
coding from orthography to phonology, and
a third via sub-word level transcoding.
Such a model is utilized in neuropsychology
by inferring, on the basis of a patient’s
performance, that the neural substrate
corresponding to one or more boxes and/or
arrows has been damaged, making a partic-
ular routine unavailable and therefore for-
cing the patient to rely on an alternative
routine to perform a cognitive task. In the

domain of acquired disorders of reading,
deep dyslexia (Coltheart, Patterson & Mar-
shall, 1980) and surface dyslexia (Patterson,
Marshall & Coltheart, 1985) might be des-
cribed in the framework of Figure 1 as
follows : for a deep dyslexic patient, pro-
nunciation of written words can only be
accomplished by the routine involving ortho-
graphic recognition and semantics ; for a
surface dyslexic patient, this same task is
largely restricted to the routine involving
sub-word level transcoding from orthogra-
phy to phonology.

This kind of descriptive model has served
a useful function in helping researchers to
think clearly about the component processes
required for complex skills like reading and
writing. Such models have been particularly
valued in neuropsychology because they
represent hypotheses about which processes
are truly separable, in the sense that a
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Figure 1 A descriptive model of hypothesized
processes for pronouncing a written word (from
Patterson, Marshall & Coltheart, 1985, General
Introducition, p. XXI).

brain lesion can damage one process but
leave another intact (Shallice, 1988).

Despite the recent popularity of this
approach, many researchers now consider
that it is limited, primarily because such a
model merely states that a particular func-
tion is handled by some box or arrow,
without specifying precisely how the neces-
sary computation occurs. Neural net models
are, in part, a response to this limitation.
They represent one way of specifying the
operation of boxes and arrows because they
are working computational simulations. A
neural net model does not just describe a
cognitive process like the transcoding of a
written word to a phonological representa-
tion : the model performs the process.

A neural net model of pronouncing written
words in English has been developed by
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Orthography

Phonology

MAKE /mAk/

Figure 2 A general framework for orthographic,
phonological and semantic processing of words ; the
part of the framework in bold outline has been
implemented as a neural net model by Seidenberg
& McClelland (1989).

Seidenberg & McClelland (1989), and some
initial explorations of this model with regard
to acquired disorders of reading have been
performed by Patterson, Seidenberg &
McClelland (1989). The general framework
of the model is shown in Figure 2, where
it can be seen that, unlike Figure 1 with
its three routines for written word naming,
this model postulates only two : one direct
computation from orthography to phonology,
and one indirect computation to phonology
via meaning or semantics. Furthermore,
although the theory acknowledges the neces-
sity for both of these routines, the initial
implementation of the model includes only
the processes in bold outline — that is, only
the direct computation of phonology from
orthography.

Like most neural net or connectionist
models, this one consists of simple proces-
sing elements (units) with connections bet-
ween them. As Figure 2 indicates, this net-
work has three levels or layers of units -
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in the simulations to be described here, 400
units code the orthographic information in
a word presented to the model, 460 units
code the phonology of the pronunciation
computed by the network, and 200 units in-
tervene at a “hidden” layer. These are
called hidden units because they do not
directly reflect any features of the real
world (such as orthography or phonology)
but are completely internal to the function-
ing of the model. In this neural net, units
within a single layer are unconnected and
therefore do not influence one another’s
operation, but there is complete connectivity
between layers . every unit at the orthogra-
phic input level is connected to every hidden
unit, and every hidden unit is connected to
every unit at the phonological output level.

Details about the orthographic and pho-
nological representations can be found in
Seidenberg & McClelland (1989). For present
purposes, it is sufficient to note just a few
facts. The order of both letters and phone-
mes is represented not in terms of explicit
position, but rather in terms of relative
position : the letter K in the written word
MAKE is coded not as the letter K in
position 3 but as the letter K preceded by
A and followed by E ; likewise /k/ in the
spoken word “make” is coded as the pho-
neme /k/ preceded by the sound of a long
/A/ and followed by nothing (a word
boundary). The other thing to be noted here
is that phonological units in the model do
not actually correspond to triplets of pho-
nemes, but rather to triplets of phonetic
features of phonemes such as place of arti-
culation, voicing, etc. This phonological
coding scheme was borrowed from the past-
tense verb learning connectionist model
developed by Rumelhart & McClelland

(1986).
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The current network was trained on a
vocabulary of almost 3000 words, which is
not all but most of the monosyllabic and
monomorphemic words in the English lan-
guage. Training was carried out in a series
of “epochs” ; during each epoch, around 500
words were presented to the net for proces-
sing. The items were selected from the
vocabulary at random but modulated as a
function of word frequency, with the func-
tion closely related to the log of word
frequency as tabulated by Kucera & Fran-
cis (1967).

Connections between units in the different
layers carry weights which are given ran-
dom values at the beginning of training.
Over the series of training trials, the weights
on these connections are gradually altered,
using the back-propagation learning algo-
rithm (Rumelhart, Hinton & Williams, 1986),
to reduce the discrepancy between the
model’s computed pronunciation for a letter
string and the correct pronunciation.

In fact, this simulation model of written
word pronunciation does not pronounce
words : it has not been implemented with
a voice. The model simply computes a
pattern of activation across the 460 phono-
logical units, where each unit is either “off”
or is activated to some degree approaching
maximum. The performance of the model
can be evaluated in one of two ways. The
qualitative measure attempts to determine
whether the pattern of activation across the
phonological units computed by the model
is closer to the correct pattern for the
presented word than to the pattern for any
other word or string. This measure is simi-
lar to assessing a human subject’s accuracy
(per cent correct) in naming printed words.
It would be cumbersome to compare the
model’s output to a very large number of
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alternative patterns ; the cur- 24
rent version of the simulation
(see Seidenberg & McClelland,
1989 for details)
the model’s output to the

compares

correct pronunciation and to
any pronunciation deviating
from the correct one by a

Mean Squared Error

single phoneme, and reports a4
the best fit. The second per- -
formance measure is quanti-
tative . for each phonological

unit, the discrepancy in acti-

Type Example

LF Exc lose

LF Reg bang

HF Exc have

HF Reg

must

vation level between expected
(what the model would com-
pute if it were performing
perfectly) and observed (what

the model has actually com-

Y T T T T T T

T T T T
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Epoch Number

Figure 3 Performance of the neural net model on
four types of words over a series of training epochs

(from Seidenberg & McClelland, 1989, p. 535).

puted) is squared and the

squared difference values from all phono-
logical units are then combined to give an
“error” score. The advantage of this quan-
titative performance measure is that two
words which are both correct (in the quali-
tative sense noted above) can still yield
different error scores. A low error score
can be thought of as the model’s equivalent
of quick, efficient, noise-free processing.
Error scores are intended to provide a
simulation of real subjects’ reaction times
in naming written words.

Figure 3 shows the performance of the
model over 250 training epochs on a set of
words from an experiment by Taraban &
McClelland (1987). The stimulus list con-
tained 96 words, 24 in each of four classes :
high frequency regular words (like the word
MUST) are English words that occur very
commonly and also have a regular spelling-
to-sound relationship ; high frequency excep-
tion words (e.g. HAVE) are also common
individual items but do not exemplify the

common pronunciation of their spelling
patterns (SAVE, GAVE and WAVE are
regular examples contrasting with HAVE);
low frequency regular words (like BANG)
are less commonly encountered items with
regular spelling-to-sound correspondences,
and low frequency exception words (LOSE)
have both lower familiarity as whole items
and also embody an atypical correspondence
(regular examples of this spelling pattern
are POSE and HOSE).

Figure 3 reveals that performance as
measured by the quantitative error score
improves over the training period for all
four word classes. How do the independent
variables of word frequency and spelling-
to-sound regularity influence the model’s
performance at various stages of training?
Early in training (for example, at epoch
20), there are major effects of both fre-
quency and regularity . the low frequency
words, represented by squares, have larger
error scores than the high frequency words,
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represented by triangles ; and the exception
words, represented by open symbols, have
larger error scores than the regular words,
represented by filled symbols. This pattern
is of interest because it corresponds to the
characteristics of word naming performance
by children who are learning to read in
English . as demonstrated by Backman,
Bruck, Hebert & Seidenberg (1984), child-
ren’s success in reading aloud is facilitated
by both familiarity and regularity. Late in
training (epoch 200, for example), there are
no longer two independent effects but rather
an interaction . for low frequency words
(the squares), regularity still influences the
model’'s performance , but for words on
which the model has had many training
experiences (high frequency words, the
triangles), there is no longer a significant
advantage for items with regular corres-
pondences. This interaction is of interest
because it is characteristic of word naming
performance by adult skilled readers of
English (Seidenberg, Waters, Barnes &
Tanenhaus, 1984 ; Taraban & McClelland,
1987). The model shows a close, quantita-
tive simulation of the effects of these two
stimulus variables on word naming by both
novice and experienced readers of English.
Simulations of other effects can be found
in Seidenberg & McClelland (1989).

As indicated earlier in the paper, the
broader theory of which the implemented
model is a part postulates two routines by
which a reader can compute the pronuncia-
tion of a written word. In attempting to
capture a whole range of human performance
characteristics with the implementation of
just one of these routines, the model repre-
sents a bold hypothesis that the majority
of word naming is handled by this single
procedure. Although more traditional infor-
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mation processing models like the one dis-
played in Figure 1 have been somewhat
agnostic about the role of the semantic
routine in normal word naming, the propo-
sers of such models have thought it neces-
sary to postulate two other, more-or-less
independent, procedures . one involving
“addressed” (word level) and another invol-
ving “assembled” (sub-word level) phonology
(see Coltheart, 1980, 1987 for reviews of the
evidence underlying this distinction). One
of the major sources of this evidence has
been studies of neurological patients with
acquired disorders of reading.

Of particular relevance to the present
neural net model is the form of acquired
dyslexia known as “surface” dyslexia (Mar-
shall & Newcombe, 1973). In its purest form
(see Bub, Cancelliere & Kertesz, 1985 ;
McCarthy & Warrington, 1986 . Shallice,
Warrington & McCarthy, 1983), this reading
disorder is characterised by (a) relatively
fluent and correct naming of words with a
regular spelling-to-sound correspondence
(e.g. MUST and BANG from the list in
Figure 3); (b) a significantly higher error
rate on words with an exceptional spelling-
to-sound correspondence (e.g. HAVE and
LOSE) ; and (c) a predominance of one spe-
cific error type on exception words : the
patient’s response represents a “regularized”
or typical pronunciation of the spelling
pattern (e.g. LOSE pronounced to rhyme
with “pose” or “hose”).

The general question to be addressed
now is whether the model, so successful in
accounting for word naming by normal
readers, can also advance our understand-
ing of the breakdown of this skill as a
consequence of neurological damage. The
specific question is whether some form of
“lesion” or damage to the trained network
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can simulate the characteristics of surface
dyslexia mentioned above. There are two
major reasons for selecting the “pure” form
of surface dyslexia as a test of the model’s
ability to capture impaired as well as intact
word naming performance. First of all,
such patients have severely impaired word
comprehension, suggesting that their word
naming performance is largely uninfluenced
by the routine, available to normal readers,
in which the computation of phonology from
orthography is mediated by word meaning.
Since the neural net also knows nothing
of word meanings, its parallel to surface
dyslexia has at least face validity.

The second point concerns the striking
claim of this neural net model that a single
procedure for the direct computation of
phonology from orthography can handle all
types of words and letter strings in English.
As already noted, traditional information
processing models have not managed without
two different procedures to explain a num-
ber of features of both normal and impaired
performance, and surface dyslexia has been
one of the sources of evidence claimed to
support this multiple-routine view. It is
simple enough to “explain” the pattern of
reading performance in surface dyslexia in
terms of a model like Figure 1 . an English

reader forced (by damage to alternative '

procedures) to rely primarily on an intact
sub-word level routine should name regular
words correctly but give regularized pro-
nunciations to exception words. A challenge
for a single-process account like the neural
net model is whether some form of disrup-
tion to the single computational process
can also produce the surface dyslexic pat-
tern of reading.

The trained network can be disrupted in
various ways . processing structures can be
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eliminated or noise can be added to the
processing procedures. It can also be da-
maged in various locations : in the present
model, for example, either hidden units or
connections from hidden units to phonologi-
cal output units could be disrupted. Finally,
the net can be lesioned to varying degrees:
different proportions of units or connections
can be affected. Some of the features asso-
ciated with these options for damaging the
network have been explored in Patterson,
Seidenberg & McClelland (1989). Here, just
one lesion experiment will be reported, in
which 20% of hidden units were damaged:
that is, after training to 250 epochs, the
activation values of 40 hidden units (selec-
ted at random from the 200 units at the
hidden layer) were fixed at zero so that
they could not contribute to the model’s
computations. The model was tested on the
Taraban & McClelland (1987) high and low
frequency regular and exception words 10
times, each time with a new random 20%
of the hidden units zeroed. The model’s
damaged performance, averaged over the
10 tests, was then compared to the perfor-
mance of two surface dyslexic patients
asked to name comparable words. The two
patients selected from the literature were
KT, a patient with a diagnosis of pre-senile
dementia (McCarthy & Warrington, 1986)
and MP, a patient with severe left-temporal
damage following a road traffic accident
(Bub, Cancelliere & Kertesz, 1985).

It is important to note that, since (a) the
patients were studied prior to the develop-
and (b) the precise
used with patients

ment of the model,
word-sets are not
always reported in detail, it was not possi-
ble to compare network and patients on
identical lists. One of the impressive features

of Seidenberg & McClelland’s evaluation
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Table 1 Word naming performance {per cent
correct) on high and low frequency regular and
exception words by two surface dyslexic patients
(KT : McCarthy & Warrington, 1986 ; MP : Bub,
Cancelliere & Kertesz, 1985) and by the neural
net model with 209 of its hidden units “lesioned”.

High Frequency | Low Frequency

Regular |[Exception| Regular [Exception

KT 100 47 89 26
MP 95 93 98 73
Model 93 86 93 78

of their computational model with respect
to normal readers is the use of identical
stimulus materials. Assessment of future
surface dyslexic patients will permit tighter
control in this regard ; for the moment, it
is merely possible to assess performance
on similar classes of words. Data for MP
were taken from Bub et al (1985, Table 1. 2,
p. 21) . performance for KT (R. McCarthy,
personal communication) includes virtually
all of the Taraban & McClelland exception
words on which the model was tested, but
somewhat different (though comparable)
lists of regular words.

Table 1 shows the performance of the
patients. As always in neuropsychology,
there is considerable variation amongst
patients with the same general symptom
complex : KT was dramatically poorer at
naming exception than regular words, even
for high frequency words. For MP, the
regularity effect was restricted to lower
In fact, MP basically
shows in accuracy of word naming what

frequency words.

normal adult readers show in speed of word
naming . an interaction between regularity
and frequency effects.

The performance of the model with 20%
of hidden units lesioned is also shown in
Table 1. The model shows a small effect
of ragularity for high frequency words and
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a somewhat larger effect for low frequency
words . essentially, a rather good match to
MP’s performance. The lesioned model
represents a less satisfactory simulation of
KT’s very substantial regularity effects. It
might seem an obvious step (towards a
closer simulation of KT) to inflict a greater
degree of damage on the net, but the model’s
performance on regular words begins to
decline when larger proportions of hidden
units are eliminated. Thus far, our lesioning
explorations have not reproduced the
dramatic pattern of performance shown by
KT.

What about the other major feature of
surface dyslexic performance noted above,
the predominant type of error on exception
words? Since the simulation compares the
model’s computed pattern of activation
over the phonological output units to each
pattern differing from the correct one by
a single phoneme and reports the best fit,
one can assess whether the model’s “pro-
nunciation” errors are a good match for
the patients’ errors. Across a large number
of exception words, both MP and KT pro-
duced the regularized pronunciation (e.g.
PINT named as if it rhymed with “hint”
and “mint”) on about 85% of error respon-
ses. The other 15% of their erroneous
responses were pronunciations with some
orthographic/phonological resemblance to
the target word (e.g. PINT named as
“paint”). The lesioned model’s errors on the
Taraban & McClelland exception words
were split almost exactly 50/50 between
exact regularizations and these other kinds
of pronunciation errors. Thus the network
successfully simulates the occurrence of the
right kinds of errors in surface dyslexia,
though not necessarily the precise propor-
tions of these error types that are bserved
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in specific patients.

These preliminary results suggest a pro-
mising start in considering alexia within
the neural net approach. There is much
work to be done, both to improve the simu-
lation of surface dyslexia and to attempt
the simulation of other reading disorders
such as deep and phonological dyslexia.
Detailed modelling of these other varieties
of alexia will require the implementation
of other parts of the theory (shown in
Figure 2 but not in bold outline) : the trans-
coding procedure from orthography to
meaning (see Hinton & Shallice, 1989, for
a neural net model of this computation)
and thence from meaning to phonology.

Since this paper originally formed part
of a symposium on various approaches to
the study of alexia, it seems appropriate
to conclude with a comment on an aspect
of the neural net approach which has impli-
cations for our general understanding of
cognitive disorders and their rehabilitation.
Like many neural net models, this one
embodies the principle of distributed repre-
sentations. As contrasted with local repre-
sentations, where one meaningful entity
(for example, the phonological form of a
particular word) is represented by one
element or location in the model, here a
word is represented by many different units,
and many different connections are invol-
ved in its processing. Likewise, no given
unit or connection in the model can be
considered to belong to a particular word:
rather that element or connection partici-
pates in the representation of and processing
of many different words.

The consequences of distributed represen-
tations for lesioned performance seem to
fit the behaviour of real patients in several
important ways. One of these is so-called

97

“graceful degradation” with damage @ as
the model is incrementally damaged, its
performance degrades gradually rather than
in an all-or-none fashion. Most neuropsy-
chologists would concur with Allport’s (1985)
observation that the performance of brain-
lesioned patients on cognitive tasks is also
not all-or-none . the most typical feature
of performance by an aphasic or alexic
patient trying to compute the pronuncia-
tion of a word is that performance is less
efficient and less reliable than normal.
The patient is likely to be slow, and may
achieve only a partially correct represen-
tation, or may indeed fail altogether ; but
on another occasion, the patient may
succeed on that same word. As Allport
(1985) emphasises this pattern fits neatly
with the idea of distributed representations:
since no one element or connection is
essential to success on a particular item,
partial damage to the network should result
in precisely this observed variability.

The second point involves generalization
of learning, whether this is initial learning
or re-learning in treatment for cognitive
impairment. In the neural net, all learning
corresponds to changes in the weights on
connections. Since any given connection is
involved in processing many different words,
it is a prediction of this kind of model that
there should always be some degree of
generalization of learning or re-learning
(Hinton, McClelland & Rumelhart, 1986).
Training on one particular group of items
(say, set A) should have maximum implica-
tions for the processing of items in group
A, because it is the connections specifically
relevant to A items which are being exer-
cised and altered ; but since those same
connections are also used to some extent
by other, similar items (in set B), the effects
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of training on A items should generalise
to some degree to untreated B items. Colt-
heart & Byng (1989) have shown precisely
this pattern of generalization effects in their
treatment of a surface dyslexic patient (see
also Wilson & Patterson, 1990, for further
discussion).

Generalization of treatment effects indi-
cates the relevance of neural net models to
rehabilitation only at a very general level.
One can, however, hope for a future stage
offering more detailed interaction between
theory and therapy. As neural net models
grow in scope and detail, neuropsychologists
may be able to use these models as a
source of hypotheses as to which items
and which types of training might provide
maximum generalization and benefit.
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